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ABSTRACT

" The stability of viscosity-stratified bicomponent flow has been studied
by long wave asymptotics, by short wave asymptotics and numerically. These
studies have shown that interfacial instabilities arise from the viscosity
difference between the two fluids. If the surface tension between the fluids
is non-zero, then Hopf\pype bifurcations leading to traveling interfacial

~

a rigorous theorem establishing

waves are expectedf In this papef, we prove-

)

the existence of bifurcating solutions of this nature.

e
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SIGNIFICANCE AND EXPLANATION o

3

Studies employing both asymptotic and numerical methods have shown that, :5

in the flow of two fluids with different viscosities, interfacial Ej
instabilities can arise at any Reynolds number. Among the geometries that ‘]

have been studied are plane Couette and Poiseuille flow, pipe flow and flow
between rotating cylinders.

The question thus arises what happens in those cases where the interface
is unstable. Which new flow patterns that would be stable can develop? C. S.
Yih has conjectured that there may be traveling interfacial waves. More
recent analysis by Hooper and Boyd has shown that there is a crucial
difference between the cases of zero and non-zero surface tension between the
two fluids. If the surface tension is zero, then waves of arbitrarily short
wave length are unstable. In this case, standard methods of bifurcation
theory are not applicable, and it seems possible that no smooth interface,
steady or unsteady, would be stable. 1In fact, we believe that this might be a
mechanism for the formation of emulsions.

If, on the other hand, surface tension is non-zero, then bifurcation
theory is applicable and Yih's conjecture could be true if the bifurcation
turns out to be supercritical. In this paper, we study plane Couette flow
with periodic boundary conditions imposed in the streamwise direction. We
consider a "basic" solution with a flat interface parallel to the walls. We
prove the existence of bifurcating periodic solutions (interfacial waves) at a
point where the flat interface becomes unstable.
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~ . HOPF BIFURCATION IN TWO-COMPONENT FLOW ;—
A M. Renardy1 and D. D. Joseph2 S
'23 ) 1, Introduction N
$j The stability of two-component parallel shear flows has been analyzed by long-wave E
o asymptotics {5]), [16]), short-wave asymptotics [6], [13] and numerically [11], {13]. These i
2: studies show that, if the fluids have different viscosities, then instabilities can arise ?
;S at all Reynolds numbers. ;:
{}‘ This raises the question of possible alternative flow patterns which might be j
t_, stable. Yih [16] has conjectured that wavy interfaces might develop. The analysis of ﬂ
:S Hooper and Boyd [6] reveals a crucial difference between the cases of zero and non-zero :i
fE; surface tension between the fluids. If the surface tension is zero, then sufficiently -
;;: short waves are always unstable, {.e., there is an infinite number of unstable modes.
3&? This situation 18 very much unlike the usual problems of bifurcation theory, and we
gné believe it is possible that no smooth interface, steady or unsteady, would be stable in
4 this situation. (In reality, of course, the surface tension is not zero, but there will
. be instability for very short waves when the surface tensfoan f{s small and the Reynolds
;:] . number 18 large. We think that this instability mechanism may be relevant in the
':3 formation of emulsions,)

ol o e
L

In the case of non—zero surface tension, however, one can establish a bifurcation

theorem. If the bifurcation turns out supercritical, this provides a basis for Yih“s

e

conjecture. For the sake of simplicity, we confine attention to plane Couette flow, but

v’ ;x (]

¥

il it 18 clear that similar techniques can be applied to more complicated geometries such as
:‘ ;Departuent of Mathematics and MRC, University of Wisconsin, Madison, WI 53705.

;*e Department of Aerospace Engineering, University of Minnesota, Minneapolis, MN 55455

&

w, ponsored by:

‘-J i'l‘he United States Army under Contract No. DAAG29-80-C-0041. This material is based upon
work supported by the National Science Foundation under Grant Nos, MC$-7927062, Mod. 2

!nd MCS~8215064.
The United States Army under Contract No. DAAG29-82-K-0029 and the Fluid Mechanics branch

hd of the National Science Foundation.
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We consider plane Couette flow of

concentric flow in pipes or between rotating cylinders.

two fluids with equal density, but different vigscosities, and an interface parallel to the

L

‘ plates. Periodic boundary conditions are imposed in the streamwise direction. Evidently,
:: this configuration is stable at rest. If there is a flow, however, then instabilities can
. develop (6], [16). Since, however, surface tension will damp short waves, there can

- always be only a finite number of unstable modes. Generically, as the flow rate is
Ny
[ :: increased, one specific mode will be first to become unstable. Since the eigenvalues are
.‘:: complex, one expects a bifurcation of the Hopf type (7], leading to traveling interfacial
1y waves.

Ty
1::: The Hopf bifurcation theorem in infinite dimensions (4], ([8-10], (14] relies on

.: coercive estimates for the linearized equations. Por one-component free surface flows
“'-: such estimates were derived by Beale [2], (3], and we shall, in Chapter 3, derive
analogous estimates for two-component flow. Our proof differs from Beale's and is
! slightly simpler. Using these coercive estimates, we can then establish a bifurcation

~

¥

-

In Chapters 5-8, we outline an algorithm for the computation of

XN

theorem in Chapter 4.

bifurcating solutions.

1Y
]
A
‘f 2. Pormulation of the Problem
o
- We consider two-dimensional flow of two fluids with different viscosities and equal
densities between parallel plates.
.
: ~ % y=1
9 2 P
by 2 2
Ao
Ve Van W Uon U
32 r y = hix)
o
4:3 n1 D.n‘
- The motion in each fluid is described by the Navier~-Stokes equations:
\
bl (2.1)  e(@+ (u+ ") w =nbu-Tp,
4 Veu = 0, 0 <y < hix),
o ¢
b -2-
B,
-
3l
d
-
§
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‘ (2.2)  o(y + (veV)y) = n, Av - Tq, >
hix) <y < 1. -

. v‘! = ( ‘. .‘

We have no slip conditions at the walls: -

* (2.3) u=0 at y =0, 2
(2.4) i

v (VO'O) at y 1. Y

Across the interface, there must be continuity of velocity and traction. This leads to .

the equations 5

(2.5) u=y at y = hix), .f‘

{

2, Y 3y, v du, du,
(2.6) '\‘((‘-h ) (K'*ET’+Z"TF'ET)}

‘2 v av1 . avz 3v1
-n, {t1-n %) ¢ W t ) + M ( Iy & )} at y = hix),

~N

auz . 3\:2 du L]

'2 U4
(2.7) 2ﬂ1w—-p-2’hﬂ1(}x—*57—)+h (2'\15-;‘—‘1))

v, sz 8v1 'z v

2 ! 1
R LIRS UM

h.
. P J at y = hix).
PRENT

Here T is the surface tension parameter. Finally, we have the kinematic boundary

condition

. .
(2.8) h + u1 h = uz.

We are interested in solutions to (2.1) - (2.8) which have a given period L in the x~

direction and are periodic in t. We denote by 91 the set {(x,y)] 0< x< L,

0<y<h(x)}, by , the set {ix,y)] 0 € x € 1, hix) €y < 1} and by

T the interface {(x,y)| 0 < x € L, y = h(x)}. The spaces n“m1), Hk(ﬂz), 1k (r)

consist of those functions which have k square integrable derivatives and satisfy

periodic boundary conditions in the x-direction.




A4

o

\ z 3. The linearized problem
\ In this chapter, we obtain coercive estimates on the linear problem, which we shall .

need later. We put vo = 0 and linearize (2.1) - (2.8) at the rest state u=yv-=0,

with a flat interface h = ho. We include inhomogeneous terms in (2.1), (2.2), (2.6) and

(2.7). % is replaced by . This leads to the problem:

Lo (3.1) Apu = n, du - p + £,
Xy < <
8 Yeu =10, 0<y<h,

P -
WA
'
L9
.s'-

(3.2) Apy = nzA\_r -Vq + £2
bl o v.!-o' h°<y<‘,

el MR i Tma s A N N & SATAR "t et ata’ _aMi Bac. A & R A B_Me B _a. a_a

(3.3)

e
[ ]
o
-

y=0,

(3.4) y=1,

1<
[ ]
o

(3.5) u=v , y-ho,

!
AR 3\:2 3\:1 sz 3v1 |
.,‘,‘5 (3.6) n,(;;-*a;-)-nz(s;—+r)-f3ny'hon :
s \
3
' du v
R 3
2 _5- -2 - " - - \
a (3.7)  2n, ay “P-M T +a-T f, +Y=h,,
f);"ﬁ (3.8) Ah = \lz ¢ ¥y= ho‘ o
:z* We seek solutions periodic in x with period L, and of course the same periodicity is ]
el ¥y
[N 9
ig;@ assumed for £1, _f_z, f: and f‘. Our goal is the following estimate: j
n
Theorem 3.1: .
Let Y > 0. For Re X > Y, the following estimate holda for solutions of (3.1) - (3.8).
lEln’ +|1|“2 +ipt +1q0 +|x||2|2
(91) (92) L} (91) H (02) L (91)
(3.9) + Al vy + Int + |a] ma <c [1£0 +1£1
Lz(ﬂz) HS/Z(I‘) H3/2(r) 1 L2(91) 2 Lzmz)
174
+ 120 + A e + 1£,1 ]
a2 Y4y eV
-4~ i
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1
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Proof:

We multiply (3.1) by E (the complex conjugate of u), and (3.2) by E, add them and
integrate over the domain. Integrating by parts, and using the boundary and interface

conditions, we find

2 2 1 1 T 2
xp(l\_;l2+l!l2)+/2n1<u.g>*/2n2<v,g>+XTlh|2

L L L
(3.10)

= (£, g)Lz U !)Lz + i £,u,(y=h ) ax + / £,u, (y =h ) ax

T - ~—
Here <u, u> = [(Vu+ (Tw") : (Va+ (w7,
J
Since u is divergence free, u, has a trace on the interface whose H /2- norm can be

bounded by 1ul 2 [15], hence the last term on the right side can be bounded by
L)
1£.1 Tul ! . The third term is bounded by

a2 ity

V. v
£0 , lud, Mgl tgl 2 1w .
L) LT Lm L5 (@) H ()

We assume that the right side of (3.9) is bounded by a constant of order one, and we wish
to bound the left side. FProm (3.10), we immediately obtain bhounds for

ful 4 Iyl 1 Int 1 (we have used Xorn's inequality here).
H H H
In the following, we make repeated use of the following estimates:

(3.11) fut _ + tyl _ + Ipl _ + gl
a2 u? u! u!

<
cug

+ [xJaar o+ Iaawr Ly,
L 2 L2 1.2

+1£ 0 _+1E N + ]Allhlﬂa/

2 2 I‘2 3 H1/2

. <
(3.12) 'h|h5/2 c(lul 2 * 1yl 2 + Wpl 1t gl

+ £ 0
H H H H 4

),
1 H1/2

(3.13) Il <m 3 m
32 x

1/3
w2

e U P T T I ISP
CAR o . fer e N
SRS . g
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Estimate (3.11) follows from (3.1)-(3.6) and (3.8), which form an elliptic system in the

Anmm B s

sense of Agmon, Douglis and Nirenberg (1). (see the remarks at the end of this chapter).
(3.12) is a trivial consequence of (3.7), and (3.13) follows from the convexity property

of Sobolev norms.

Lemma 3.2.:

For any € > 0, the following quantities can be estimated by the right hand side of
(3.9):
VI U I P R 7 Y R T P R P T I PV I P T I Y T I
H L L H H H H
7Y, am i ) TV
H H
Proof of the lemma:
We prove by induction that
n, n
(3.14), M1 < chh|2 /3,
H n,_n
(3.95),  tul , Myf , < )2 73, 4
L L n,.n I
(3.16), twt ., iyt < c pVHEAED, ‘
H H n,.n
(397wt _+0pt , dvb _+1ql  <c A2 23 '
n =2 17 =2 1
H H H H

Obviously the lemma follows by letting n + o, We already have (3.14)-(3.16) for

n = 0. By combining (3.11) - (3.13), we obtain

ful , + 1ph , + 0yl , +0gl < C(IEN , +IE0

(3.18) H H H H L L

+ 0.0 172 + A} var _ o+ |x| tet _ 4+ [A] hE 23,
3 =2 = .2

H H‘

1/3
+0g 4 1g ) .

(fuf 172

+ vl + Ipl
Hz H2 H1 H H

[ ] + Iql
L ANPIREL

with B8 = ful + Ipl + we find, using (3.14), - (3.16),
~u? H H u' i

R P N S T .
\.- '.-..a‘.-\q‘.‘.’\,-. R T I T LT <
. X . . . e

A e
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Ly

1
n,.n n+1 ,_n+1 -
3.19) Bec v+ 27 o2 B 3 e V3.
From this, (3.17), follows easily.
Next, we wish to show that (3"4)n+1 - (3.16)n+1 follow from (3.17)n. Using (3.8), the

trace theorem and the convexity property of Sobolev norms, we find
c — —
(3.20) thd < /1ul Jlab .
H‘ |X| H2 H‘
Moreover (3.10) implies
-1
Y8 g Vg 17212

. vl + 1 +
(3.21) LA ul 1 < C(ful > iyl 2 +

H H L L T H
and
(3.22) Myl + tub , < ¢ EY .t |x|‘1/2(lg| o b+ |x|-1/4|2|122 Tt ;{2 V2 1.
L L H L L L
With x = lul + vl _, y = tut + vl and using (3.17) , we find that (3.21),
-1 - - .2 -,2 n
H R L L
(3.22) take the following form
1/2 -1/8 1/4 1/4
(3.23)  x<cy /P 2TV VALY,
2n-1/3n_ 3
- -5 8 1/4 174
(3.24) y < ()] 4 x vz, [A] 172 y /2 + || / / x / ) .
1 -1 1
From (3.23) it follows that x < Cy 2 o x« c|A| /6 y /3 . depending on whether the

first or second term on the right is bigger. In the first case,

(3.24) yields

n-1,n 3
2 /3 y

(3.25) y < C (’Xl y1/4 + lx'-‘/z y 1/2 + lXI-S/B v 3/8)

From this (3.15)n+1 is immediate. In the second case, we get

n-1,.n_3 1 1
2 /3. — -3/4- —
(3.26) y < c([A] 4R VE LTy 2 24y 3

From this, (3'15)n+1 is also immediate. From (3'15)n+1 and (3.21) follows (3'16)n+1' and

using (3.20) and (3.17)n we find (3'14)n+1'

.‘- \p. ~
~"
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To proceed further, we take difference quotients in the x - direction. These satisfy the
same equations (3.1) - (3.8) with the f's replaced by their difference quotients. From
{3.10), we then see that the H‘-norms of all x-derivatives of u and v can be estimated hy
terms of order 1. The divergence condition now yields
fal v_ 1_ < C.
ular Wi ¢ €

=5/4+€
Equation (3.20) now yields fht _ < c|A| / , and (3.21), (3.22) now imply

1
c H

Tl + vl < . The rest follows easily. It remains to prove (3.11). For this,
i I I
we only need to show that (3.1), (3.2) with boundary conditions (3.3) - (3.6) and (3.8)
from an elliptic system in the sense of Agmon, Douglis and Nirenberg [1]. We can formally
regard (3.1), (3.2) as being posed in the same domain by mapping the strip occupied by
fluid 2 onto the strip occupied by fluid 1. We do this in such a way that the interface
is mapped onto itself and the solid boundaries are mapped onto each other. This yields a
system for the six unknowns (u,, Uyr Pr Vs Yy, q), which are now defined on the same
domain. That the Stokes equations are an elliptic system is well known. The same holds
of course for two sets of Stokes equations. It is also well known that Dirichlet boundary

conditions satisfy the complementing condition. Showing the comnlementing nature of the

interface condition is a straight forward calculation, which we omit.

Remarks:

We have so far only given estimates for a solution that was assumed to exist and have
the regularity implied by the left hand side of (3.9). Such estimates show that (3.1) -~
(3.8) for Re X > Y > 0 1is solvable for a closed set of f's (in the topology indicated by
the right side of (3.9)). Solvability for a dense set of f's can be shown in a straight
forward manner by separation of variables. From this we see that in fact, for any

A with Re A > 0, (3.1) - (3.8) has a unique solution. (3.9) holds uniformly in any
closed subget of any right half-plane, if this subset contains no eigenvalues. Moreover,
by compactness, the number of eigenvalues is countable, and there can only be finitely

many in any bounded set. (3.10) implies that all eigenvalues have negative real parts.
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4. Bifurcation to travelling waves

It is convenient to use a domain mapping which takes the domain occupied by each fluid to
a fixed one. The most straight forward way to construct such a mapping is to stretch or
contract vertical lines. We shall in addition transform the velocity fields in such a way
that the divergence condition is preserved and (2.8) reduces the linearized form even in
the nonlinear case. In doing this, we essentially follow Beale [2].

let y = ho be the flat interface of the rest state, and let y = h(x,t) be the actual
interface, which we assume periodic in x with period L.

Let P be any linear extension operator that maps functions h(g) € Hs, into functions

8*1/2

h(Z,n) such that h(c,ho) = h(;) and h € H (there are many ways to construct P).

h to h = h.. Let then
o o

For simplicity, we also assume that P takes h
fo(n) be a C’ - function of n such that fo = 1 near n = h° and fo = 0 near
n=0 and n = 1. Define h(Z,n,t) = h(Z,M,t) * £ (n) + h (1-f_(n))

We now define

(4.1) ewmm)-(mn-ﬁﬁfﬁ%

o
Evidently, O maps the strip 0 € n ¢ h° to 91, and the strip h° <n< 1 to Qz.

The velocities are transformed as follows:
30, .

i
(4.2) ui(ﬁ(c,n.t)) = Bcj uj / 3,

where J 1is the jacobian of O. Of course, v in Qz is transformed in the same way.

Explicitly, (4.2) reads

= h h = h.
h_ - Z3 h N

(4.3) 2 (h +n h ) (“11 n h u1 + ( +n h ) uz Yo
[+ [+ [ (] o]

Formula (4.2) is set up in such a way that u, v are divergence-free in the x,y-plane, if

u, v are divergence-free in the ¢, n-plane. Moreover, (2.8) now assumes the simple

form

-9~
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(4.4) h (L,8) = u (E/h_,t)-

2
It is also clear that (2.5) does not change its form, i.e. u =yv at y = hix) ¢
becomes u =yv at n = ho' The boundary conditions at the walls are also preser
When these substitutions are inserted into (2.1} - (2.8), we obtain a new set of

equations, which we do not write down explicitly. We shall refer to these new equ
as (2.1)* - (2.8)*. If we have a flat interface h = ho, then of course (4.3) reads

u=u, and (2.1)* - (2.8)* have the same form as (2.1) - (2.8).

Plane Couette flow is the following solution of (2.1) - (2.8):

- - n,v - - nV +Vh (n-n)
h(x)Eh,u=_.2_°____y,u=o'v=1o 0021’
o 1 n1+h°(n2-n1) 2 1 n, + ho(nz-n1)

- - -

v2 =0, p=0, q= 0.

We can linearize at this solution, and obtain a set of linearized equations analog
(3.1) = (3.8). As usual, we call A an eigenvalue, if the homogeneous linearized
has nontrivial solutions. The estimates in chapter 3 imply that, for V, = O(rest
is a countable sequence of eigenvalues, all in a sector of the left half plane bou
away from the imaginary axis. All these eigenvalues have finite multiplicity and
index zero. Estimates like those in Chapter 3 can easily be extended to the linea
at Couette flow with finite V,. If we linearize (2.1) - (2.8) at this flow, then
are a number of terms perturbing (3.1) ~ (3.8). All these terms are relatively cc
except the one resulting from uy h' in (2.8). This latter term vanishes in a fr
moving with the fluid on the interface. Standard perturbation theory [12] can now
to show that estimates like in Chapter 3 hold for ) in any closed set that lies
right half plane and contains no eigenvalues. However, there can, and as [6), [1€
there will be a finite number of eigenvalues with positive real parts if V, is ]
enough. Generically, there will be a critical value voc' such that, for Vo < V<
eigenvalues have negative real parts, but a pair of simple complex conjugate

eigenvalues crosses the imaginary axis transversally as V° increases past V.
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‘:-': denote these imaginary eigenvalues by ti‘"o-
(‘ . We introduce the following substitutions in (2.1)* - (2.8)*:

AN

., = - - - w
_:::. Toewt, ut =y -uV), vyt =y - vV ), ht = (h-h ) i

. X

't We use the following notation for function space: H_ denotes the space of functions
S Q

o defined on -» < { ¢ @, 0 € n¢« ho' which have petlod’ L in ¢ and Hk-reqularity.
.. Similarly, we define Hi « Finally H)f is the set of k times differentiable periodic
A 1] r

.-}f functions depending on 2 alone.

"-'; l-lk(x) denotes the spaces of all 2n-periodic functions defined on -® < T < ®, taking
. values in X, and having k square integrable derivatives.

>

\J‘: For the analysis of (2.1)* - (2.8)*, we choose the following space V:

N

] 2 1t .2 2
y v={taty, proa, w0y] we e n' i nn’ad o, v en'mf ) nn’ad ),
- - - “ T 2 2

[#
Ty

o

pe H1(H%1)' qe H1(H%2)’ ne e n' @) n w?w%?),; ate we = 0, atv v = 0,
:; U p+J/ q=0,u*=0 at ns=0, v* =0 at n=1, u* = v* at
50K a, %,
‘ X ne=h,w g—:ﬁ- u* at n=h, jL h*(z)ar = 0}
b, °
b <"t
""-:' Functions in this space have sufficient regularity such that all the nonlinearities in
- (2.1)* - (2.8)* are defined. The coercive estimates of Chapter 3 and the implicit
;:; function theorem can be used to prove the following result (the details of the proof are
f.;: analogous to the standard proof of the Hopf bifurcation theorem and are omitted here).
&
.4.‘:;
: Theorem 4.1:
* -
:": Assume that, at V, = oc’ there is a pair of algebraically simple complex conjugate
.. : eigenvalues t:lwo, w, $+ 0, and no other eigenvalue is an integral multiple of iwo.
;' Moreover, assume that those eigenvalues cross the imaginary axis transversally, i.e. if

X(vo) denotes the branch of eigenvalues for which A(Voc) = imo, then
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av Re X(V°)|v =V

o o oc
solutions (u*(e), v*(€), p(e), q(e), h*(e)) = : Y(e), such that Y(e) € V is a solution

+ 0. Then there is an analytic branch of nontrivial time-periodic

of (2.1)* - (2.8)* for V° = VB (€) with temporal frequency ® = w(e€). For € =0, we
have VB = Vbc, w = mo and Y = 0. This branch of periodic solutions is unique except
for phase shift or changes of parametrization.

If, at Vo = Ve all eigenvalues other than timo have negative real parts and we have

a
A Re X(vo)lv > 0, then the bifurcating periodic solutions are stable if
o

Vo(t) > voc for small € + 0, and unstable if vs(e) < vbc.

=V
o oc

Remark :
It is easy to show higher regularity of the bifurcating solutions by choosing function

spaces of higher regularity for the bifurcation analysis.

5. Reduction of the bifurcation problem to local form

In the previous two sections, we have provided the analytical tools and the estimates
needed to establish a bifurcation theorem. In the following, we now describe an algorithm
for calculating approximations to this bifurcating solution.
As before, we study bifurcation from plane Couette flow, and we consider the velocity of
the upper plate as the bifurcation parameter. Plane Couette flow is the following
solution of (2.1) - (2.8):

;(x) = hor

- nz V° Yy

-
1 n1+h°(n2-n1)

- -

0, p=0,

[
]

(5.1)
- [n1y + ho(nz-n1)l v

1 n1+h°(n2-n1)

14

0, gq=0.
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For the bifurcation problem, it is convenient to introduce new variables representing the

-

perturbation of this solution. We therefore replace u, and v, by u, *+u,

+ hi
v, + Vv, where u,, v,

0<y<h (x,t) and h(x,t) € y € 1, respectively. Moreover, we set

are given by the formula (5.1) in the regions

(5.2) hi{x,t) = ho + 8(x,t),

and 6(x,t) has zero mean value as a function of x. With this change of variables,

(2.1) and (2.2) take the form

. ~ 9u1
- —— —— -‘7 - -
(5.3) ol u+ Ukt ey, v + (u9) u] = n,8u - 7p, 0 <y < hix,t),
div u=0,
. “ ¥ v
(5.4) p (v + Vit P& Y 5;— + (v¥) y] = n, Av - Vg, h(x,t) € y € 1,
div v=0.
On the walls, we have
u=20 at y =0,
(5.5)
yv=20 at y =1,

-

In the normal and shear stress conditions, the terms introduced by u,, v1 are such that
they cancel. Moreover, h' = 6', s0 h can be replaced by 6. Across the interface

y = h(x,t), we thus obtain the following conditions resulting from (2.6) and (2.7)

du 3u du du

2 2 1 ~2 __1

=8 n g+ 5y * 2 8057 ~ 3

(5.6)
v v v v
2 2 1 N N
= =80, (FF+5y )M, G i
-13~
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Ju du du du
2 . -2, 2 . ‘
n, 3y p - 2 n, Gt 3y ) + & (2n‘ e p)
v v v v :
o - _2 - - [) .._3 _l 12 ._l - '
~ (5.7) 2n2 2y g~ 2 n, (3% * 3y ) + 8 (2n, == q) .

+ 7T 6'/ (1+6'2)V2

The condition (2.5) is replaced by

‘"1'”2)5vo

+ - ’
n, hc,(n2 n,)

(5.8) u, ~-v

1 = v1(h°+5) - u1(h°+6) =

1
(5.9) Uy = Ve

Equation (5.8) shows that, for n1 + n2 and vo + 0, 8(x,t) can be eliminated and
expressed by the jump in the x-component of velocity at y = h° + 8i(x,t). Finally,

equation (2.8) assumes the form

(5.10) & +u, ()8 +u 6+ 3h° -u, .

Our bifurcation problem is now given by (5.1) = (5.10). The null solution corresponds to
plane Couette flow. We consider & in (5.6), (5.7) and (5.10) as having been eliminated

from (5.8), and look for solutions (u, v, p.,q) which are periodic in x.

6. The spectral problem and its adjoint

The spectral problem for the stability of the null solution is

- % -
— L - -
(6. 1) Pllutu, 3= + ¢ u,ul ] +9p - 2, div 3 u] =0 0<y<h
div us= 0,
v R

-~ -

(6.2) p[Xz}v1 3; + e, vzv; ] +Vq - 2nzdiv 3 vl =0 h° <Cy<1,

div v =0 .
Here D [u) is the symmetric part of Vu. On the walls we have
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at y =0,

[
»
o

(6.3)
v=0 at y = 1.
n,ﬂnz-n‘)h°
From (5.8), we have § = k(u1 - v1), where k = v (n1-“2) .

By inserting this into the remaining interxface conditions and linearizing, we find the

following conditions at y = h:
(6.4) Uy = Vy = 0,
(6.5) 2n, D, lul - 2n, D, (¥l =0,

(6.6) -p + 2n1 D22 u} +q - 2n2 Dzzlv] - Tk(u:~v1') = 0,

(6.7) (X+u(h ) : )k(u -, ) - u, = 0.

We turn next to the computation of the spectral problem, which is adjoint to (6.1) -

(6.7), We multiply (6.1) by E" (6.2) by if. the complex conjugates of the adjoint
velocities, and integrate the resulting expressions over their domain of definition. We

assume periodicity in x with period L, and integrate by parts using periodicity,

solenoidality and (6.3) to derive

a aa' a
ar - -— +pu®*ue - o*l1} .
é {p2u LI pu, u1gy 2n1 aiv 2 {u*l} « u dxdy
1
. 3 - -
® - —— . ' - ] .
+ ) {oag* - ov, St P Vv et A, A 2 (v*1}e v axay

2

-) paivur - | qdivy*
Q 1]
(6.8) ! 2

L
- -cJ, {(-q+2n, D, (¥]) v} ~ (-p + 20, D,,[ul)ug

v - *] -
+ 2n2v1 012[!] 2n2 v, D [v ] 2n2 v2 022[ *)
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0 - a*
+ 20.u, D, (u*] - 2n, u$ D, (u] + 2n,u, D,,[u*l}ax .

By considering special forms of u, v, p, q, we find that in 0 < y < ho. we have

~ odu*

. ur - —_— —QA'-Z ot] = - 9 p*
(6.9) pAu o\a1 3% pgyu1 \:n1 n‘div D [u*] P*,

aatala i« A A 4 s o+ W

aiv u* = 0,

whilst in ho <y<i1,

'1
]

_ .
(6.10) piy* -p v

+pe vtv!

- vt] = =Ugq*
1 T & Vi vy andivD(!] vgq*,

aiv v* = 0 .
We insert (6.9) and (6.10) back into (6.8), and compute

. » oVag®*
] 3 Byt 2Tt axay
91 Q
2
L- —
-](p'uz-q'vz)dx.

o

This term is added to the right hand side of (6.8), leading to
L -— -—
- * - L 4
(6.11) 0 ]° {(-q+2n2 D,, (¥1)v} + (p=2n D, . (u])u}
+(q* - 2, D, [¥*1) v, + (p* + 20 D, [E*])u,

*:m;'o[!) 2nu'D

2 V1 P12 12l

+m ou, D, [u']-znsz(v]}dx.

We use (6.6) to reduce the first line of (6.11), (6.4) for the second line and (6.5) for

the third line. Thus we find
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CRPRE N - —' - -t - "oy
(¢ (6.12) 0 i ((-q#zn2 022 {v]) (v2 “z’ TS u;

4
4 WA W B L LY - BN

. a* - v*] - p* 4+ u*
uz(q 2n2 Dzzlv 1 -p 2n, 022[3 1)

+ Ve - ut
+ (v1 u‘) 2\‘\1 012 {u}

] - . !
N + (u‘ v1) Zn‘ Dﬁtu'l

+vi(mp . (@] - 20, D (¥*])) ax

® st -

A

We next write
L
J G'uz' ax = | 6\;2" dax,
o o

A oes
A

%

- 3
and set § = k(u1 - v1) ' U, = (Xm(ho) ™ ) k (u‘-v1).

o
LAAAL

This leads to

Ait il ™

-~
&

L
0= jo {(=g+2n D22 (v])(v;-\n;)

AN

-, - 3_ - - -
+(u1~v1) < =Tk “2' + (X-u(ho) ™ ) k (q* 2n2 D [ve]

:: 22
A

N - p* o ar

N p* ¢+ 2n D, [u*]) + 2 D [u*) >

i
N

o, -j(i,' P

-C -.t .
+ (v1 u') 2'\1 012 fu)

. vy (2 D (u*] - 20, D, [¥*]) } ax.

‘3 This yields the following four conditions on y = h

ut] = v
AT (6.13) 2n, D [u*] = 2n, D (v 1,

e -17-
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(6.14) Kg - ;-1,
(6.15) G; - F;,
- -~ a - -—
. - .n — )k * - .
(6.16) Tk ug + (X-u(ho) x ) (q 2n2 022[v ]
P +2n D (@) +2m D_ [a%) =0
- = L
P My Py 12 1 Py &%)
Thus the adjoint problem is given by the differential equations (6.9), (6.10), the
Dirichlet conditions u* = 0, E? = 0 on the walls and conditions (6.13)-(6.16) on the
interface.
It is easy to establish a necessary and sufficient condition for the solvability of the
inhomogeneous problem corresponding to (6.1)-(6.7). Suppose that the zeros on the right
of the first equation in (6.1) and (6.2) and on the right of (6.4)-(6.7) are replaced by
(6.17) 31 (x,¥), gz(xcy), 93 (x), 94(’()! QS(X)l QG(X)I
respectively. This inhomogenous problem is solvable if and only if the data (6.17) are

orthogonal to the kernel of the adjoint, that is, when (6.17) is such that

(6.18) | g cu*dxdy +) g, ¥ axdy
a, " a
1 2
L

= 4 q*~- D v + ar + u*
l{qa(q 2n, 22(11) 9N+ 95 v

q*- v*] - p* + a* .
+ g lq*-2n, D, [v*] - p :n o, (u 1)} ax

¥We are interested in the neighborhood of a critical point, where a loss of stability
occurs. There is a critical plate velocity vo = Vo such that the real part of
A vanishes, and )\ = 1»0. We put
vO - vo( 14R),
so criticality is when R = 0. We get Hopf bifurcation when the loss of stability is

strict

-18-
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be a right eigenvector satisfying (6.1)-(6.7) at criticality. Then 50 is the right ks

g - )l
v eigenvector belong to -:I.wo. 50' and -C-o * are the left eigenvectors belonging to K
4

L) -
N iv  and -iw . D
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PRI il
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-

7. Domain perturbations and Hopf bifurcation

w'

"t "l et N
)

We have already demonstrated that Couette flow can bifurcate into a time-periodic

solution in which we have travelling interfacial waves. To compute this solution we

'J would, following Lindstedt, map the solution into a fixed frequency domain
(2% periodic in &)

0§
'..': wdt = ds,
WL
A and replace
W . . w ¥y,
. (. @ ow b wen w3z, 57050
A, in (5.3), (5.4) and (5.10). We then map nur problem into a fixed spatial domain, using a
.’:-. one to one linear mapping, which takes boundary points into boundary points

D

&,
LY

.' - -

s Y,~1 hey<t,

(7.2)y y= (h(x:t)-ho) ;‘o_—‘ Y, b <y <1

.-.j o Yo !

.‘3 and
?'n h(*;t)‘ho Ny‘h(x.t)o
oy (7.2}, y= 0+ ) Y,
- o 0<y <h

- o o

.. ~ ~
:'{- We then change variables, putting x = x, and y = y(xo.yo), where y is defined by
ey
::-: (7.2) in equations (5.3)=(5.10). The form of these equations changes under the change of

ot
variables. However, following ideas introduced by Joseph [18], (19] we find many
<ttt

simplifications. We shall now explain these simplifications.
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First we introduce an amplitude parameter which is conveniently set as a projection

e'[av 3']1

def ) 2
[3121 - In j < 319 > ds,
o

and <a, b > are intergrals over both regions of the type displayed in (6.8). We are

working in the frame of § VIII.3 of Iooss-Joseph [17], and

is
* = *
(7.3) 2 e g,

where 5; is the left eigenvector at criticality which was introduced at the end of the

last section.

The bifurcating solution may be computed in a series of powers of €. Thus

2 4

€
(7.4) m(c)-w°+2—u2+ﬂm4+...,

4

- el - -
(7.5) Va(e) = VB(‘* -3 Vz - V4 + .0

N

It follows from the classical theory of Hopf bifurcation that « and V, are even

functios of €. we have assumed this in writing (7.4) and (7.5). Moreover,

2]

u (x,y,8,€) u (XO:YO:S)

v (x,y,s,€) b c'.+1 ![l](xo,yo,s)
(7.6) -l o (t]

p (x,y,8,€) 1=0 P (xo,yo.s)

q (x,y,8,€)

q[“(x Y +8) .

-« e ey @) v, vy LR T S et v "
ﬁ.‘ﬂ‘\f._:.‘a R s ._’:.":..-.-." - .:. [ RACRS A

~ .
M Rk U 4 ‘.

The functions of x and y are defined in deformed domains with a wavy interface

h(x,s,€c) - ho = 8(x,8,€E). The functions of xo and Y, Wwas defined in the reference
domain with a flat interface at y, = h. The perturbation of the interface §8(x,s,c) can
be eliminated from (5.8); that is,

$(x,8,6) = k (u,-v,)(x,8,€)

=20~
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is an identity for all x,s,E. The square brackets on the left of (7.6) indicate

differentiation following the mapping evaluated at € = 0. For example,

o
“
Ox
e (n] a" u(x,y,s,€)
~ % = (x y_.8) = —
. . ° de € =0
N
. (7.7)
- - an u(xo:y(xolyovﬁge)"lc)o
-l ac”
::.' There is a simple differential calculus for domain perturbations. The partial
A
\'j' derivatives, holding x, y fixed, at € = 0 are also important. For these
A n
1 <n> - [ ulx,y,s,€) K
;.' (708) ! (xopyop.'e) [asn ]e-o b '*
. -1
f: The two types of derivatives are related by the chain rule o
f..l ‘..
o Y _.4
N 3u<0>
1 _ <» + <1> = s
O 4
~
*¥ -
) < 2 <0> <0> -
° du 9% du "9
15 12] <2> <1 <1 2°Z <« °Z N
' 7.9 u =y + + ( ) + .
;:‘ ( ) u u 2y Y Yy v2 b 4 '5; ' -
[ '_q
~ ‘j
A (n] <nd> i‘
x u (xo,yo.s) =u (xo,yo,l) + lower order ternms, ¢
o R
:«: wvhere %
] )
W y =1 :
5 . .
j 6(!\?" '8) S +h <€y <1, »4
o o o T4
h°-1 "
o <
; (7.10) y "’(xo,yo,.) - { "
' Yy "
Mad <n o o
N § Txo.l);—. 0<y, <h, . R
"~ ) -
N -
_ On the free surface Yo " ho of the reference domain, we have =
";
<nd>
1 (7.1 yPix b 8 = P ix 0.
4
\ The equations governing the coefficients in (7.6) are very complicated because the
¢
)
3 differential operators with derivatives with respect to x and y in the field equations
pe:

]

nust be reexpressed by derivatives with respect to Xy Yo under the change of variables
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i:’: X, ¥ ¥ X Ve Since this mapping is invertible we can continue (7.6) as
§
N
Ny (¢]
-_\‘-’_\ u (x,y,s,€) u (x.yo(x,y.s.e).s)
S 241
LA ‘ € ['.]
l?i: (7.12) v (x,y,8,€) = ) (e YU,y (x,y,8,€),8)
. =0
,,:"_ etc . etc .
..';::‘i
”:\} Portunately it is never necessary to solve the complicated equations which govern the :
.;S: derivatives (%] on the right of (7.6). In fact we need only to do much simpler
calculations for the partial derivatives <2>. When the partial derivatives <> are
fff' known the total derivatives [f] may be computed by the chain rule (7.9). The point of
- )
{fx simplicity of partial derivatives is that they don't perturb the operators which are :
RSN |
- defined on region 91 and 92, below and above the free surface, see [18] and [19]). For
3 !
o example, g P gy
S <n> %4 Y2
R - = + =
:{?( (7.13) div u (xo,yo,s) —3;;— ——3;: 0,
T4
“~
A
"-"‘
( whereas
e e div u [nl(x ¥ 8) $ 0.
*ACN - o'“o
’
: :f: The same type of simplication holds for the perturbation equations which arise from (7.1),
LN
:‘_\ . (5.3) and (5.4). For example,
<2> <2> <0>
. du 3u
- - f - 2> - S 2> = 0> ° <2> 1>, <>
.. . + + . — . + *
Mol (7.14) 0 v, 535 1tk Y& Y2 M ™y Y2 Wy LR
:"..'. ax
N 3u<0>
R - <2> 2>
. % + (llz TS ] = n1 Ag Vp .
.

3

%

The unknowns here are 9_<2>, p<2>, w, and Ve

..J‘.J

It is not possible to avoid the total derivatives [f] in the equations (5.6)~(5.10)

v
At

Ly
Ay

because these are defined on a manifold, the interface, and not in a region. The

E

interface conditions are of the form

A
P st
4%
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(7.15) g{x,y = hi{x,s,€), 8, €) =0 -
o
‘ and the perturbation of y = h with € cannot be avoided. 1In fact the interface o
conditions are identities on the interface so that tangential derivatives on them vanish R
(gee [19)). }i
'..1
The following is a recipe for perturbations of the domain in bifurcation problems. .
i
First, we introduce the frequency w(€) into (5.3), (5.4) and (5.10) using (7.1). We ¥
then ingert the series (7.4), (7.5) and the sgeries .E
K1
<> )
E(XIYIBIE’ u (XO:YO,B): N
<h>
v (x,y,8,€) v (xo,yo,s)l
r+1
€ <>
7. —_—
( 16) p(xIYI‘Ie) (l+1)! P (xolyols)l
£=0
4>
qi{x,y,8,€) q (xolyovS)l
8(x,8,€) 6""(x°,s)

into div u = div v = 0, (5.3), (5.4) and (5.5) and identify the perturbation equations.
These equations hold in the reference domain. To get the equations which jovern the
interface conditions (5.6)-(5.10) we insert the series (7.6) and identify. Then we
express the derivatives (£] with partial derivatives <>, using the chain rule. The
perturbation equations arising from interface conditions are thus defined on the flat
interface y = ho.

The series on the right of (7.16) may he expressed on the deformed domain by
inverting the mapping, as in (7.12). 1In fact, the series on the right of (7.16) is equal

to the series on the right of (7.6), though the partial sums of these two series are not

equal (see equations of [18]).
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8. Solvability of the perturbation eguations

We must solve perturbation problems of the following form
(1) All functions of s are 2n periodic in s

(ii) All functions of x = x_ are L periodic in x

(¢} [«]

(iii) 1In the region 0 <y < h,

au1<n> 3u2<n>
(8.1) 5;— + 3; 0,
-}
a“1<n>“ 3 « <n> <n> <n>
. —_— 4ty — o+ '] -
(8.2) D[mo 3 u = e, u'} n1AE + Vp

= 91(wn, Yar %or 8).

(iv) In the region h° < Y, € 1 we have the same equations with

-~

<n> > <> <n>

v n (x ,y ,8), viy ), q<n> and 6 replacing u n sy U, P n and 6_.

- o ‘o [] -2 - -1
(v) u<n> = (0 at Y, = 0, v<n> =0 at Y, = 1.

(vi) On the interface y = h° + 8, we have by (5.8)

(8.3) 8=k [[u1]], EuJ] gef“1 - v,

We have eliminated § from the interface equations (5.6), (5.7) and (5.10) with

Of course

<n> <n>
6 = E n =
k u, on y° h°

(vii) The four interface conditions on Yo = h° are of the form

<n> <n> o
u, v, - 93(Vn, X s s),

@y e

212X ] = 64(vnl xol s},

n1012[g

<n> <n> <n> <n>
p +NDy,u 7] + g Ny Dyyly ]

2
? <n> iy
kT ; 3 uu,‘ ] - es(vn,xo,s),
*o

-24~




3 ~ 3 <nY <nd> -
k(u, §2 + U,k 3"0)[[“‘ T -, - Bl s VX .8).

The inhomogeneous terms 6 are linear in the unknown parameters mn and vn and are

otherwigse known from computations at orders L < n.
These inhomogeneous problems can be solved uniquely in the space orthogonal to the

null space of the adjoint operator introduced at the begining of §6. This null space is

two dimensional and is spanned by
L -y
2z and 2z

defined by (7.3) and explained in §VIII. 3 of Iooss & Joseph. There are therefore two

-

solvability conditions to be used in the determination of the parameters mn and v“.
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